ENERGY SECURITY BOARD

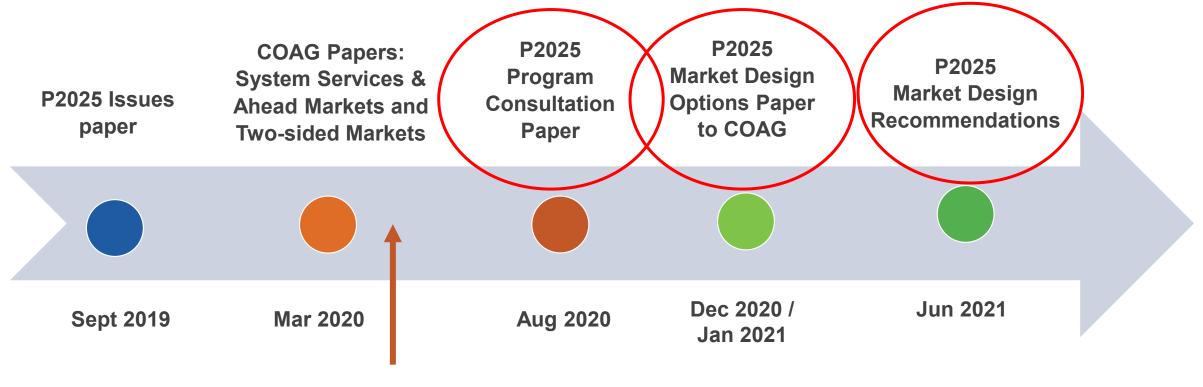
POST 2025 FUTURE MARKET

PROGRAM

TECHNICAL WORKING GROUP AHEAD MARKETS - UCS

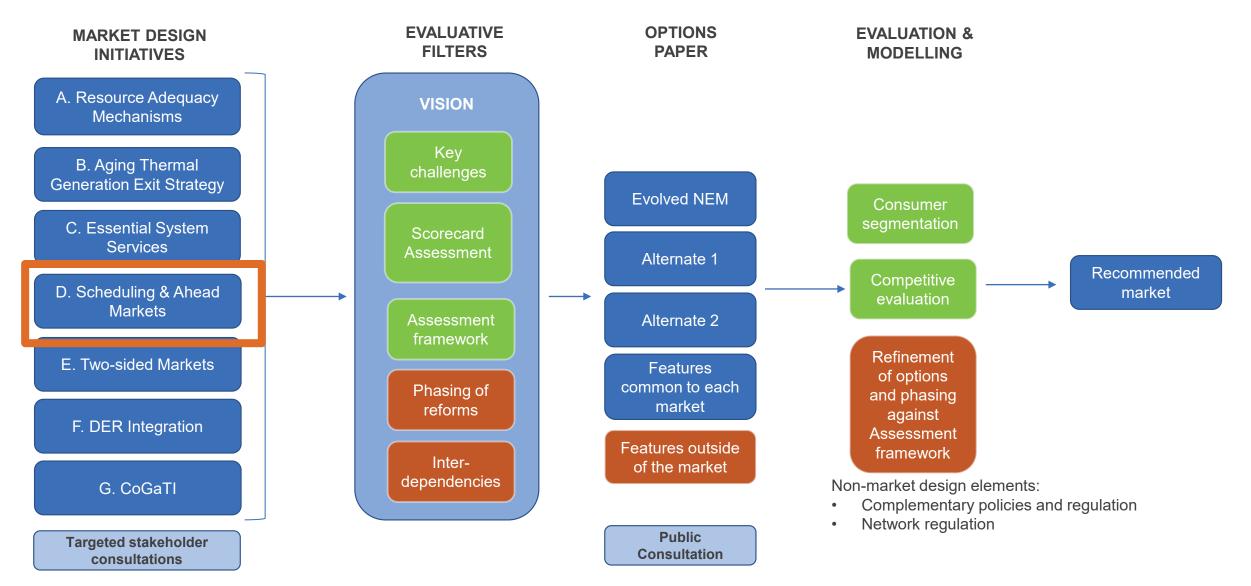
14 MAY 2020

POST 2025 FUTURE MARKET PROGRAM (P2025)


The COAG Energy Council tasked the ESB with developing advice on a long-term, fit-for-purpose market framework

to support reliability that could apply from the mid-2020's.

The ESB needs to recommend any changes to the existing market design or recommend an alternative market design to enable the provision of the full range of services to customers necessary to deliver a secure, reliable and lower emissions electricity system at least-cost.

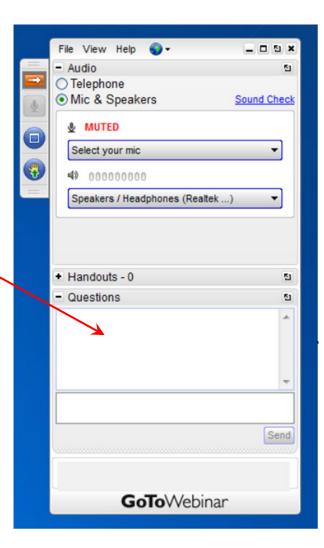


P2025 PROGRAM – KEY DELIVERABLES

WE ARE HERE

P2025 PROGRAM ARCHITECTURE

WEBINAR PURPOSE & LOGISTICS



AGENDA

- 1. Stakeholder engagement approach for scheduling and ahead market stream
- 2. Overview of where the UCS fits in the ahead market design
- 3. Introduction to the UCS
- 4. A primer on the unit commitment problem
- 5. Detailed design considerations for the UCS

WEBINAR-WORKSHOP LOGISTICS

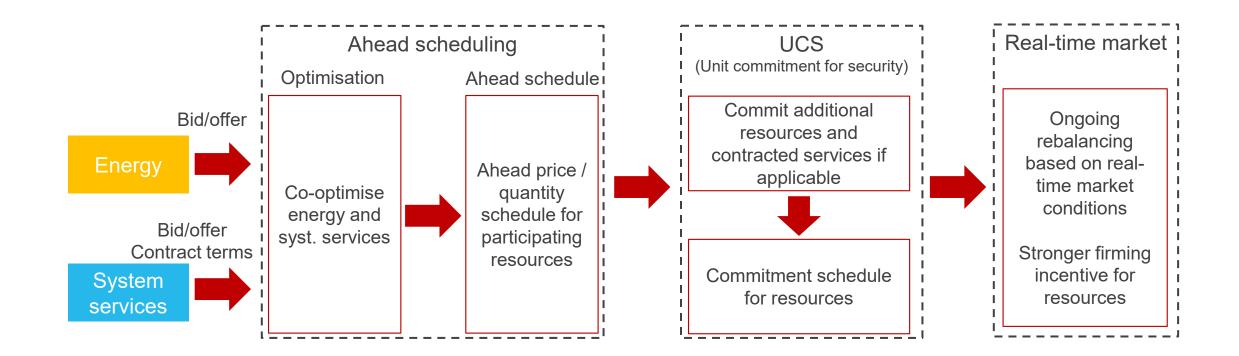
- All participants are currently in listen-only mode
- We will pause at the end of each page where you see the ? symbol to answer questions. Please:
 - Type your questions here as we proceed through the content (double-check before sending); and/or,
 - Use the Raised Hand to signal that you would like to speak when we open the audio.

IMPORTANT NOTES

- These slides are solely for workshop purposes only. The content provides general information to support informed stakeholder engagement and foster a diversity of thinking and feedback.
- The presentation does not represent the official position of the Energy Security Board or any related body.
- The webinar is being recorded and a link to the recording will be provided after the webinar.

STAKEHOLDER ENGAGEMENT

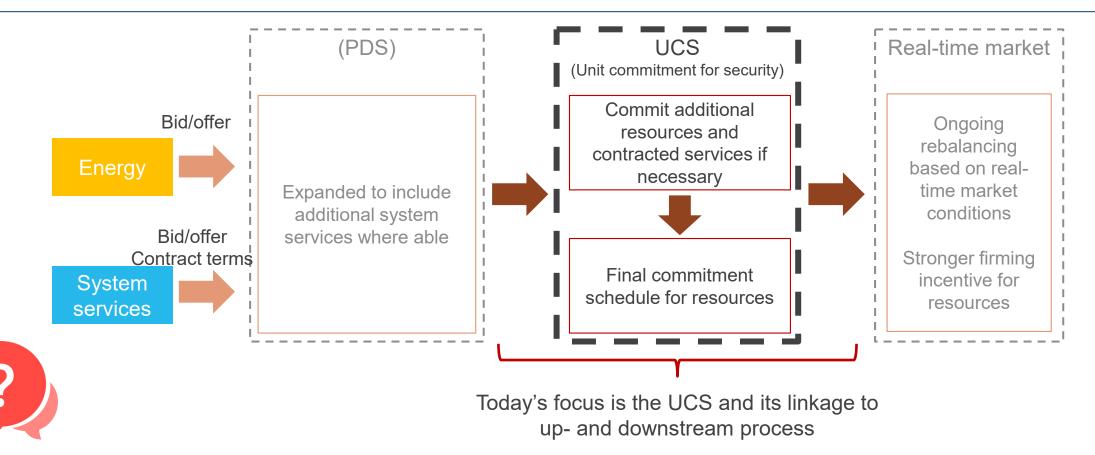
UPCOMING STAKEHOLDER ENGAGEMENT


- Upcoming focus group meetings for the Ahead market workstream:
 - 14 May Unit Commitment for Security (UCS).
 - 15 June Ahead market design elements.
 - 16 July Discuss design, examples, feedback and issues.
- We will hold a follow up 'open mic' feedback session after each focus group meeting to allow further questions and comments from the focus group. The first feedback session is proposed for Wednesday 20 May.
- Each meeting pack will include a summary and response to questions and comments provided at the most recent focus group meeting.
- We encourage focus group members to get in contact with the team with feedback and questions.
- Assessment of the options will be carried out following the development of the high level design.

OVERVIEW

Recap of content covered in last Scheduling and Ahead Markets TWG

OVERVIEW OF AHEAD PROCESS



AHEAD MARKET ELEMENTS IN THE SPECTRUM

	Minimum change from current NEM	Enhance firming through ST contracts	Co-optimised energy + system services ahead schedule	Most firm commitment
	1. Unit Commitment for Security (UCS - only)	2. UCS plus voluntary forward market	3. System security ahead market	4. Compulsory ahead market design
Ahead scheduling	N/A	Opportunity to trade short term contracts for energy and system services ahead of real-time.	Co-optimised ahead scheduling of energy and system services. Potential scheduling of contracted system services	Mandatory participation for all energy and system service resources.
UCS	Commit additional units to fill system gaps based on PDS and system forecasts Potential scheduling of contracted system services	Similar to option 1, with PDS expected to be updated to reflect VFM outcome	Similar to option 1, with PDS reflect ahead scheduling outc	
RT balancing	Stays as per now - mandatory gross pool scheduling. PCP affects payment and operation of relevant resources	Similar to option 1, with VFM schedule included in settlement	Similar to option 1, with ahead settlement	d market schedule included in

FOCUS OF TODAY'S DEEP DIVE

- Today the focus is on the UCS, which is in all options
- We will work through it primarily in the context of option 1 (UCS-only option)
- Assumption that the existing pre-dispatch scheduling process (PDS) is retained (expanded to include additional system services), but there are no other ahead scheduling process (unless otherwise noted)

INTRODUCTION TO UCS

What is the UCS?

How does the UCS differ from current processes?

An example of the UCS process

UNIT COMMITMENT FOR SECURITY (UCS) IS A PROCESS THAT OCCURS IN ADVANCE OF THE CLEARING OF THE REAL-TIME MARKET

Potential benefits	 Brings system security and reliability directions processes into a single integrated process Optimisation-based, cost minimisation approach to schedule contracts for system services and commit additional resources when required Moves away from the current <i>ad hoc</i> intervention process
--------------------	--

UCS TAKES A SET OF INPUTS AND YIELDS DECISIONS THAT CAN BE TAKEN BY MARKET OPERATOR

1100

Inputs

- 1. Forecast of system conditions
- 2. PDS and/or ahead market solution (if applicable)
- 3. Plant economic costs* & technical information
- 4. Terms and conditions of system service contracts

	UCS		Re
1.	Assesses whether all system requirements are met	1.	Activation of co (including REF applicable)
2.	Determines whether contracts for services should be activated	2.	Commitment ir by system ope
3.	Produces indicative commitment schedule for additional resources		necessary to: I. Commit c
	if gaps in system requirements are identified		resources II. Confirm c

Result

- Activation of contracts for services (including RERT where applicable)
- Commitment instructions issued by system operator where necessary to:
 - I. Commit out-of-market resources
 - II. Confirm commitment of already-committed resources
- Economic costs used to commit additional resources are based on the actual costs of operating the plant, not bid-based costs used in the current real-time dispatch.
- These economic costs could potentially be subject to a regulatory verification process.
- The distinction between this approach and existing arrangements is important the UCS is a tool to determine additional commitment to deliver system services (eg, system strength, reserves), and is a separate process to RT- dispatch.

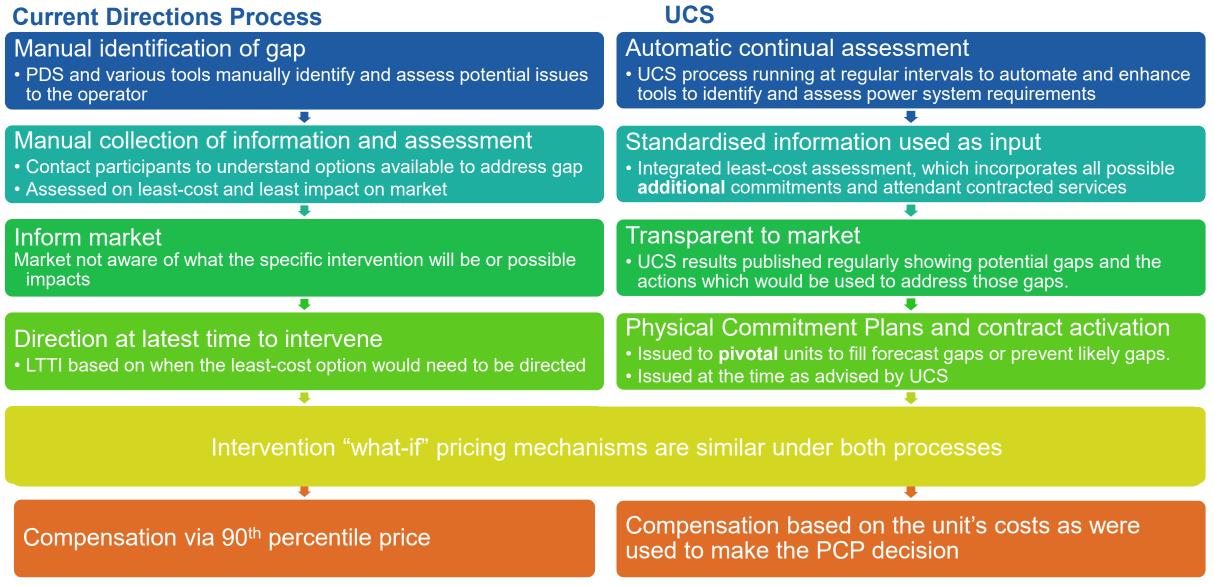
IT IS HELPFUL TO UNDERSTAND THE CURRENT DIRECTIONS PROCESS

Identify potential gap	 There is no single tool that allows operators to assess all system requirements at once given, for example, some rely on binary or inter-temporal variables and dispatch and pre-dispatch uses a sequential linear optimiser.
Manually collect information	 Contact participant operators (including generators, networks, users) to understand options available to address gap Assess options so as to minimise cost and market impact.
Inform market	 AEMO issues a notice to the market indicating potential and rationale for intervention, as well as the likely time of that intervention. Market does not have information as to what the intervention will be or its impact.
Direct	 Least-cost direction (as per hierarchy in rules) made at the last possible time to allow for a market response. Operators continue to monitor to ensure unit has responded to direction and gap is managed. Decision is made as to whether to price the direction or not (apply intervention pricing).
Intervention pricing	 Intervention pricing is applied where the direction was for a traded service to restore the price to the value but for the intervention.
Compensate	 The directed participant is compensated based on the 90th percentile of prices over the last 12 months. Affected participants are compensated based on their change of market dispatch and spot price.

THE UCS SEEKS TO ESTABLISH A FORMAL, EFFICIENT, TRANSPARENT PROCESS

 Optimisation-based approach to meet system needs An optimisation which can handle binary variables (eg, whether a unit is online) and attendant costs and constraints to find optimal additional commitment that satisfies all requirements of the power system whenever a gap arises in the commitment. 	ints
---	------

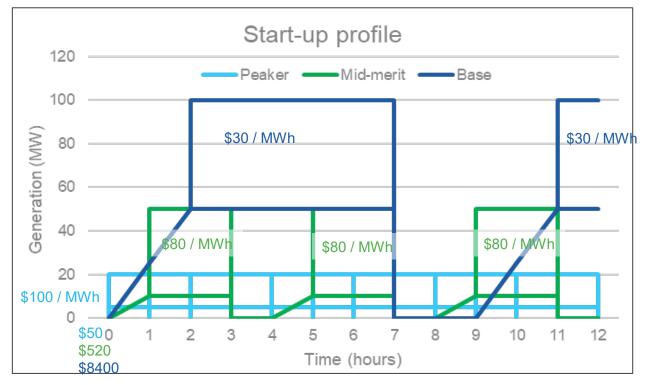
Respect market process and self- commitment	 Takes commitment outcome from market process (ahead scheduling and pre-dispatch) as a starting point Only brings on additional out-of-market resources to address gaps in the absence of a market response.


Transparent leastcost approach

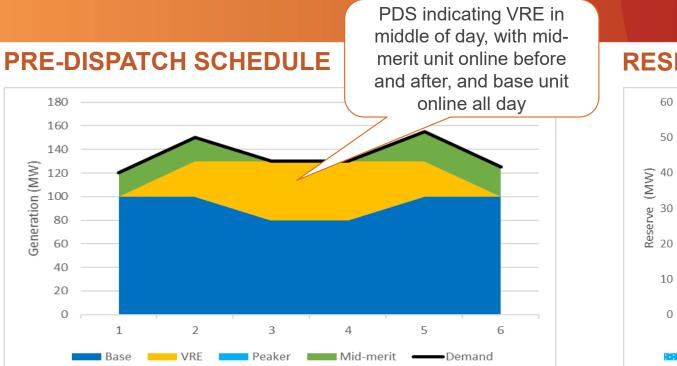
- Provides a mechanism to schedule contracts for system services to fill gaps and potentially assess market benefit.
- Transparent \rightarrow results from the UCS can be published, providing greater visibility for participants.
- Consistent \rightarrow optimisation produces consistent, efficient results rather than current ad hoc, opaque process.

20

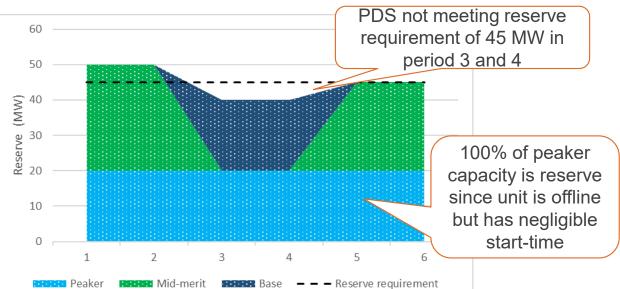
THERE ARE IMPORTANT DIFFERENCES BETWEEN CURRENT PROCESS AND THE UCS

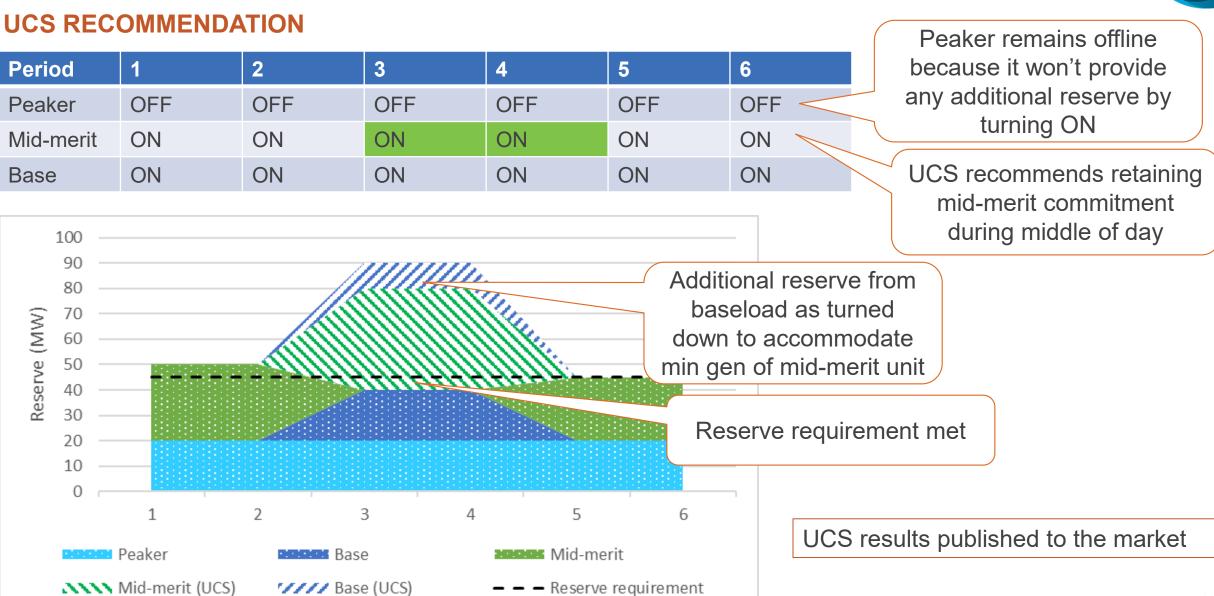


*The current process would be retained for exceptional circumstances


RESERVE EXAMPLE

This example:


- Highlights where the UCS may recommend to prevent a unit decommitting to maintain responsive reserve levels (eg. FCAS) during the day.
- Is illustrative only to explain how a UCS would commit units if the PDS is indicating they are not already online and there is a security gap to fill.
- Is not to discuss why or why not the units are online.
- Uses reserve to facilitate TWG understanding as a familiar concept; it is not to say that the UCS will be regularly used to address a reserve gap.
- Can be extended to how units may be committed to provide various capability and in different arrangements.


UNIT	MIN GEN	MAX GEN	START TIME	MIN ON TIME	MIN OFF TIME	START COST	RUN COST	Responsive Reserve
	MW	MW	Hours	Hours	Hours	\$ / start	\$ / MWh	Status to provide
VRE	0	100	0	0	0	\$0	\$0	N/A
Peaker	5	20	0	1	0	\$50	\$100	Offline
Mid-merit	10	50	1	2	1	\$520	\$80	Online
Base	50	100	2	5	2	\$8400	\$30	Online

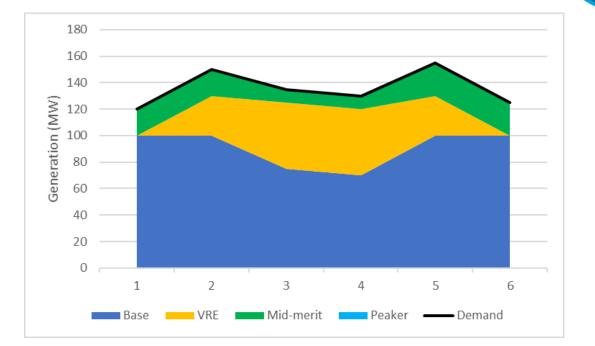
RESPONSIVE RESERVE

Period		1	2	3	4	5	6
Demand forecas	st (MW)	120	150	130	130	155	125
VRE (solar) (MV	V)	0	30	50	50	30	0
Net demand (M	W)	120	120	80	80	125	125
Initial Status		Energy Schedules					
Peaker	OFF	0	0	0	0	0	0
Mid-merit	ON	20	20	0	0	25	25
Base	ON	100	100	80	80	100	100
Reserve availab	ble (MW)	50	50	40	40	45	45

PHYSICAL COMMITMENT PLAN

- As real-time nears, the UCS continues to highlight a gap in reserve over periods 3 and 4, and continues to recommend that the mid-merit unit fills the gap.
- A PCP is issued to the mid-merit unit as per the UCS recommendations.

Do not decommit at end of period 2.


Run for periods 3 and 4 at minimum generation.

L	× –	

- Since the mid-merit unit was already online as per the PDS outcome for commercial reasons, the unit does not need to be compensated for its start-up costs.
- The unit is only guaranteed to be compensated for its cost of running at minimum generation (10 MW) at its running cost of \$80 / MWh for period 3 and 4.

REAL-TIME MARKET

- Demand in the RTM varies from when the UCS was run to be 5 MW greater in period 3.
- VRE remains as was predicted in UCS run.
- Base unit output changes compared to what was indicated in PDS as it is dispatched to:
 - Accommodate min gen of UCS unit in period 3 and 4
 - Take up additional demand (in RTM compared to PDS) in period 3

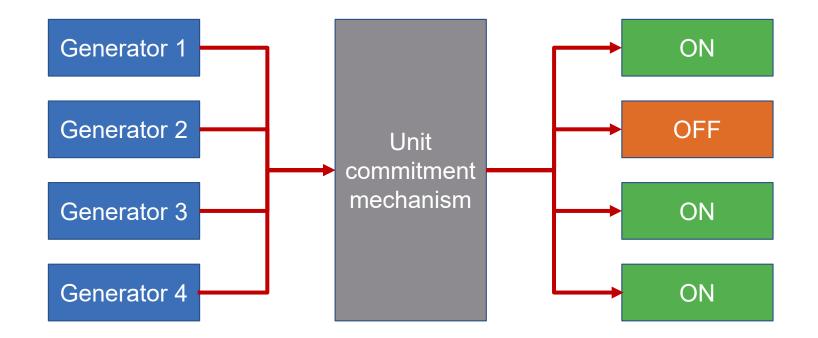
25

Period		1	2	3	4	5	6
Demand forecas	st (MW)	120	150	135 (+5)	130	155	125
VRE (solar) (MV	V)	0	30	50	50	30	0
Net demand (M	W)	120	120	85 (+5)	80	125	125
Initial Status				Energy S	chedules		
Peaker	OFF	0	0	0	0	0	0
Mid-merit	ON	20	20	10 (+10)	10 (+10)	25	25
Base	ON	100	100	75 (-5)	70 (-10)	100	100

SETTLEMENT

Unit	Comment
Peaker	Not impacted by UCS commitment
Mid-merit	Needs to be compensated for UCS commitment. Guaranteed revenue for running costs at time of PCP
Base	Generates less due to UCS commitment – is an affected participant under intervention pricing application.

PRIMER ON UNIT COMMITMENT

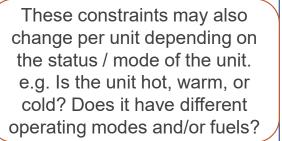

Unit commitment overview

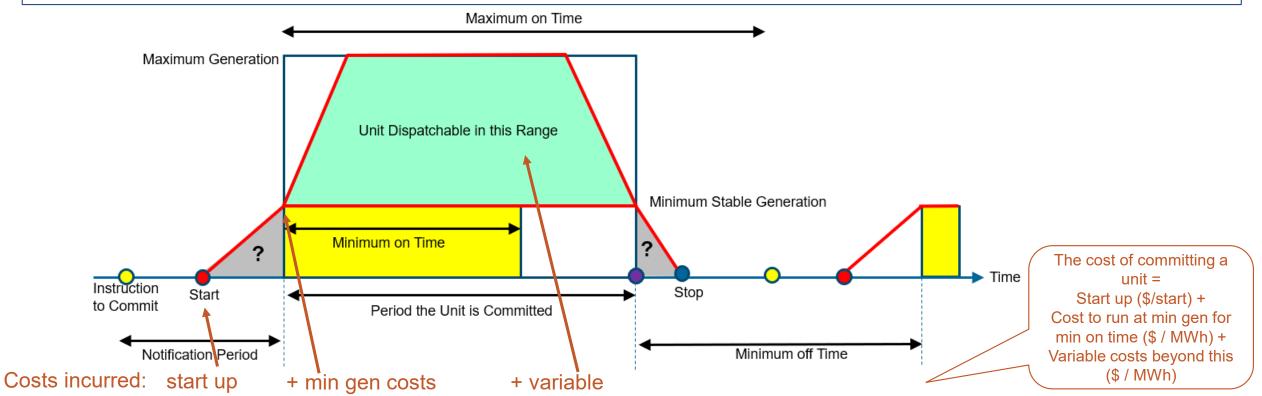
Optimisation window

THE UNIT COMMITMENT PROBLEM

Unit commitment is a problem that determines which resources should be turned on in order to meet total system security and reliability requirements at lowest cost.

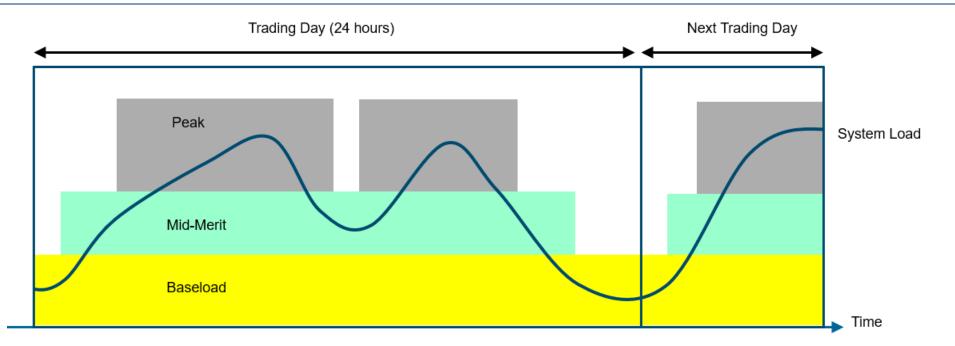
- Generator submits costs and other relevant technical parameter regarding their plant
- A process that finds the optimal commitment pattern (which generator to turn on or off) based on the operating costs of the unit.
- Generator that are on are then available for dispatch




MODELLING THE UNIT COMMITMENT PROBLEM

The seemingly simple problem of turning on a generator (i.e., unit commitment problem) is complicated by constraints such as:

- 1. How fast the unit can react to instruction
- 2. What is its minimum stable generation, and how quickly can it reach that level and at what rate
- 3. How long does it take to reach maximum output and at what rate
- 4. Minimum duration for the unit to remain on
- 5. Minimum wait time to restart the unit if it is turned off
- 6. Etc...


Typically handled through a well-developed technique called mixed integer programming.

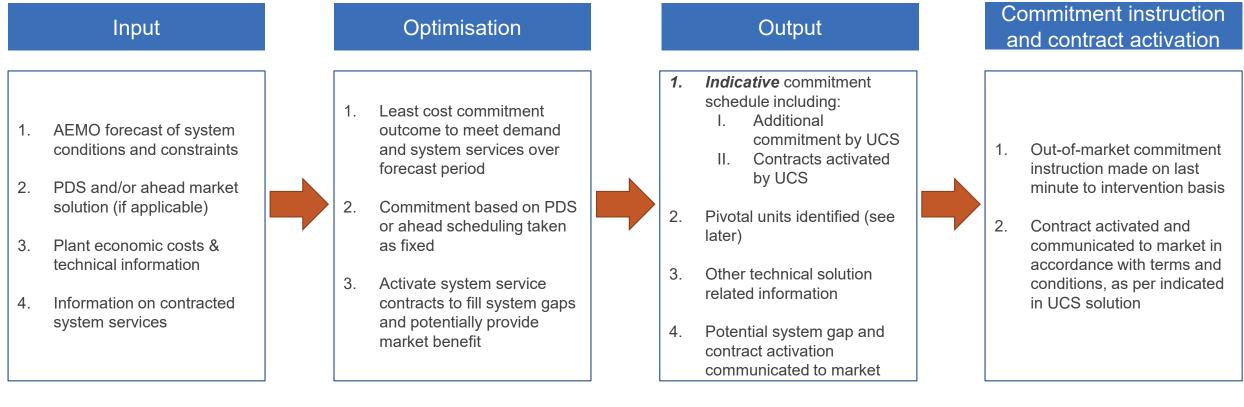
OPTIMISATION OVER TIME

- Illustration below uses an energy example, but the same reasoning applies to co-optimisation with other system services.
- Solving unit commitment problem needs to look ahead in order to make a meaningful choice between:
 - Inflexible resources with higher start cost but with lower ongoing cost vs
 - Flexible resources with lower start cost but more expensive running cost
- Knowing system conditions ahead also important when scheduling energy limited resources (e.g., battery and pumped hydro)
- Often optimisation window extends beyond the period of interest to mitigate sub-optimal solutions issues at the end of period

DETAILED UCS EXPLANATION

Process of the UCS

Inputs, optimisation, output, resulting actions

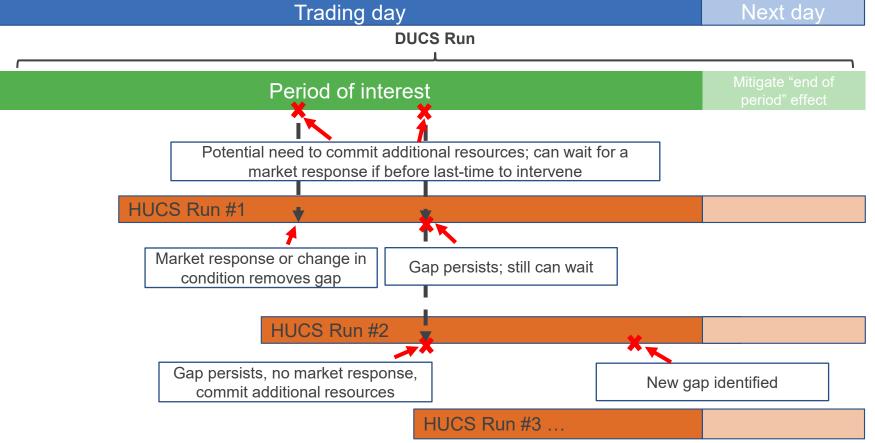

Timing of commitment instructions

Settlement implications

THE PROCESS OF UCS

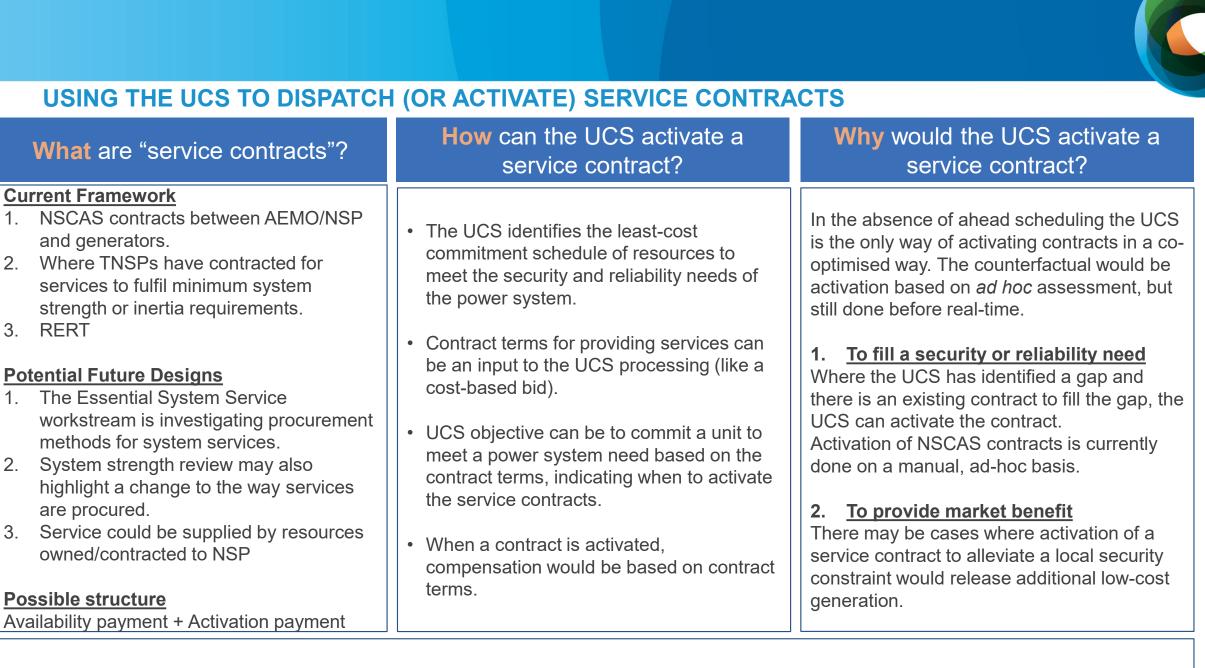
A generic flow chart of the end-to-end UCS process. More on the timing of daily- and hourly or intraday-UCS next...

DUCS AND HUCS


Combination of Daily and Hourly UCS (DUCS and HUCS) to allow for

- Early identification of problem to assist operational planning and alert the market
- Continued monitoring of system conditions and communicate updated information to the market
- Committing additional resources at the appropriate time if market response is not available (more on this later)

*Note below is for illustration only. DUCS does not have to be run for a day, but instead once every 4/6/12 hours depending on design.


DUCS run

- Run over the whole day/x-hour-block
- Provide indicative outlook for SO and can be communicated to markets
- Can "wait for market response" when gap initially identified

HUCS run

- Runs every hour/2 hours (for example)
- Run for the remainder of the day with updated information
- Outcome communicated to market
- Commit resources when approaching real-time with no forthcoming market response

What are the alternatives to activating service contracts through the UCS?

INPUTS

System forecast	 Demand and VRE generation System service requirements Network constraints
PDS and ahead scheduling solution	 Self-commitment and availability for energy and system services in PDS taken as input in UCS run Commitment based on ahead scheduling solution (if applicable) could be reflected in subsequent PDS commitment
Plant economic and technical data	 Plant economics to commit additional resources including start up, no load and incremental variable cost provided as "standing data" but could also be updated on regular (e.g., daily) basis These costs are true economic costs that could be verified, not bid-based cost used in actual dispatch Unit technical information such as notification time, min on/off time, min-gen, ramp rate, energy storage limit, etc.
Contracted system services	 Contracted resources for providing system services could be included as notional generators E.g., contract costs replace plant economics and other contractual terms could be reflected in unit technical information

• Are there any additional inputs required to assess the security and reliability of the system and to determine least cost commitment outcome?

OPTIMISATION

A CONSTRAINED MINIMISATION APPROACH

Minimise total cost of committing and running units over time, subject to the following sets of constraints

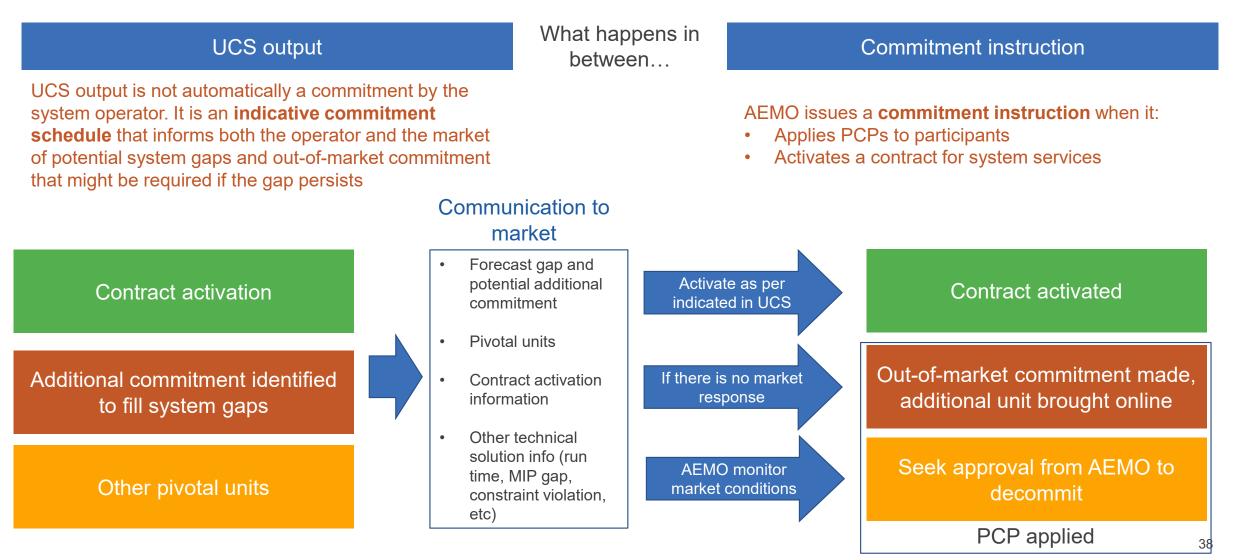
- 1. Energy demand = supply
- 2. System services demand and constraints met
- 3. Network constraints satisfied
- 4. Generator output within technical limits
- 5. Generator on/off decisions feasible

*Note self-commitment through PDS would be treated as fixed in the UCS run, with potential adjustments to ensure feasibility.

TREATMENT OF CONTRACTS FOR SYSTEM SERVICES IN UCS

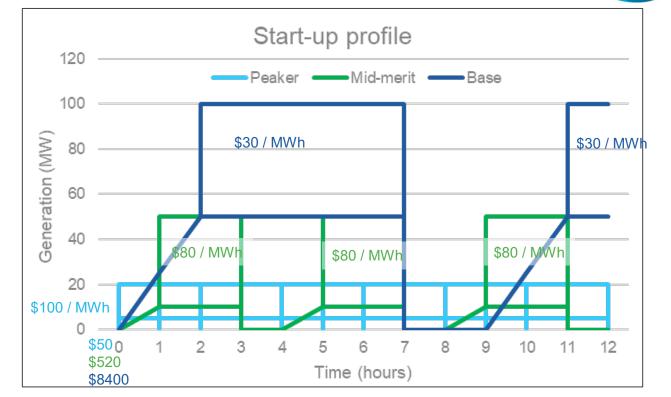
- Contracts for system services would be treated as if they are "notional generators" with plant cost and tech limitation reflecting contract terms.
- UCS can activate contracts to fill system gaps or to potentially to provide overall market benefit
- For the latter, UCS would explicitly consider the following trade-off :
 - Activating additional contract for more system services beyond min. requirement (e.g., more system strength)
 - Allowing lower total system cost (e.g., more VRE output)

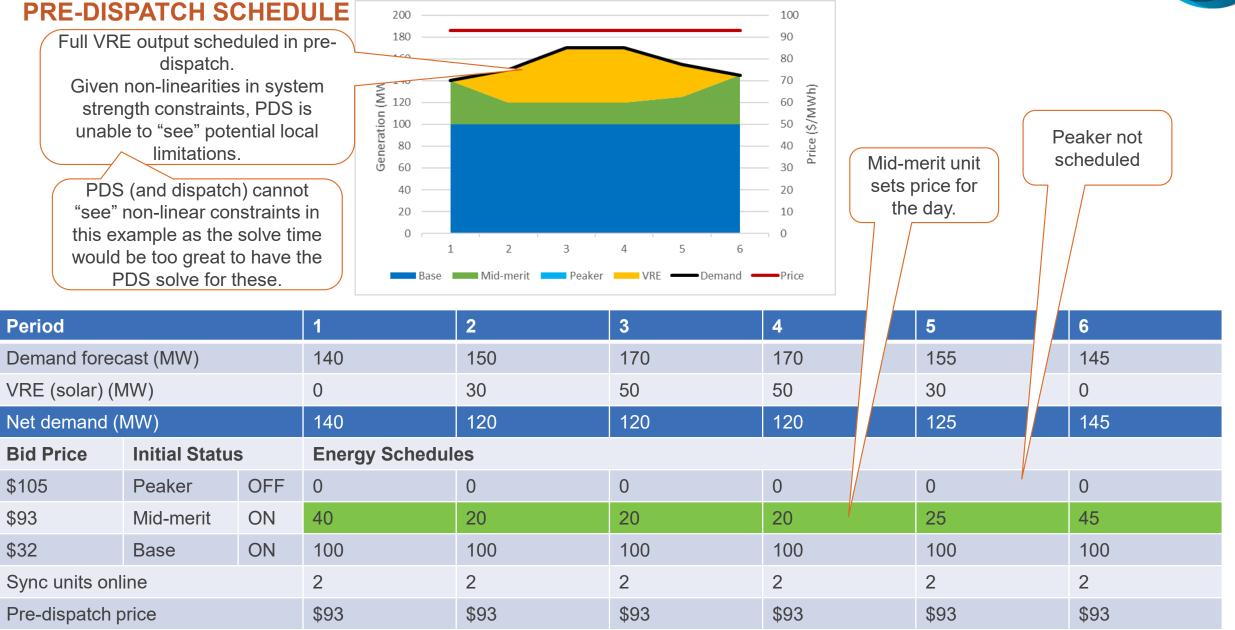
• What are your thoughts on dispatching service contracts if there is a market benefit to do so, but the contract is not needed to maintain security and reliability? Is there a better way to schedule these contracts to provide such benefit other than the UCS?



SOME CONCEPTS AND TERMINOLOGY REGARDING UCS RECOMMENDATIONS

ACTIONS A		BASED ON THE UCS	DEFINITION OF "OUT-OF- MARKET COMMITMENT"PCP APPLICATION TO PIVOTAL UNITS			
For contracted system services	To fill system gap or potentially provide market benefit	Contract activation		<u>NOT</u> "out-of-market" commitment, as contracts are "in- market" services		Resource operates as per contract requirement
Issue a physical of	commitment plan					
<u>(PC</u>	<u>CP)</u>	Pivotal units				PCP applied
For services traded in spot (ahead and/or RT) markets	To fill a system	Commit additional resources		These are " out-of-market		 Synchronisation time and duration
or For services not	gap	Extend commitment of self- committed resources		commitments"		 Level of output (if applicable)
traded in spot market but from an uncontracted resource	To prevent a system gap due to a single unit decommitting	Request relevant resources to seek AEMO approval before decommitment		<u>NOT</u> "out-of-market" commitment <i>unless</i> request to decommit not approved		Need to seek permission before decommitment


UCS OUTPUT AND COMMITMENT INSTRUCTIONS


CONTRACT ACTIVATION EXAMPLE

This example:

- Illustrates how the UCS could recommend the activation of a contract to fill a system security gap.
- Has some assumptions in the way security constraints are handled between pre-dispatch, dispatch and the UCS, and how pricing is managed in the event of activation of a contract.
- The same set of units are available in this example, and now the peaker unit has a contract to provide system strength in a particular location of the network.
- AEMO can call on the contract for the peaker to run at minimum generation, and the unit is paid as per the contract terms.

UNIT	MIN GEN	MAX GEN	START TIME	MIN ON TIME	MIN OFF TIME	START COST	RUN COST	CONTRACT
	MW	MW	Hours	Hours	Hours	\$ / start	\$ / MWh	
VRE	0	100	0	0	0	\$0	\$0	
Peaker	5	20	0	1	0	\$50	\$100	Activation payment: \$60, Usage payment: \$110/MWh
Mid-merit	10	50	1	2	1	\$520	\$80	
Base	50	100	2	5	2	\$8400	\$30	

UCS RECOMMENDATION

UCS assessment finds:

- Local system strength limits would be breached with current pre-dispatch schedule in the middle of the day.
 - The UCS can highlight this where perhaps PDS may be unable because of mixed integer programming enabling understanding of non-linear constraints.
- There is a contract available to alleviate this system security breach.

UCS optimisation recommends the activation of the peaker unit contract.

Period	1	2	3	4	5	6
Peaker	OFF	OFF	ON	ON	OFF	OFF
Mid-merit	ON	ON	ON	ON	ON	ON
Base	ON	ON	ON	ON	ON	ON

REAL-TIME MARKET

- Real-time market takes into account that the contract • has been activated and schedules the peaker unit.
- Mid-merit unit ends up being dispatched 5 MW less • than PDS had indicated to account for peaker min gen

 Real-time market takes into account that the contract has been activated and schedules the peaker unit. Mid-merit unit ends up being dispatched 5 MW less than PDS had indicated to account for peaker min gen. Peaker can't set market price because it has been activated via a contract. 					140 120 100 100 40 20 1 Base	2 3 Mid-merit Peaker	4 5 • VRE — Dema	6 nd		
Period			1	2		4	5	6	Total MWh	
Demand forecast (MW)			140	150	17	170	155	145		
VRE (solar) (MW)			0	30	50	50	30	0	160	
Net demand (MW)			140	120	120	120	125	145		
Bid Price Initial Status Energy Schedules										
\$105	Peaker	OFF	0	0	5 (+5)	5 (+5)	0	0	10	
\$93	Mid-merit	ON	40	20	15 (-5)	15 (-5)	25	45	160	
\$32	Base	ON	100	100	100	100	100	100	600	
Sync units online 2			2	2	2	2	2	2		
Pre-dispatch price \$93			\$93	\$93	\$93	\$93	\$93		42	

180

160 140

SETTLEMENT

Unit	Comment
Peaker	Settled as per the terms of activation of its contract.
Mid-merit	Receives real-time market revenue for generation. Generates less compared to original PDS due to contract activation, but intervention pricing is not applied in this case as the contract is a market- based process.
Base	Receives real-time market revenue for generation.

TIMING OF ISSUING COMMITMENT INSTRUCTIONS

The main trade-off:

- 1. Wait for a market response vs.
- 2. Wait for too long and have only expensive options (or no options at all) to address gap

Services traded on spot markets (ahead or RT)	 Market response and capturing scarcity conditions crucial for resources to exercise commercial options and recover investment cost Cost of committing more expensive resources secondary especially if "out-of-market" commitment is rare 	Wait until last minute to issue PCP
Contracted system services	 Contract itself is a market mechanism with pricing and conditions negotiated upfront Cheapest "market solution" therefore is indicated in the UCS run already Provide participants with certainty and sufficient notice about pending contract activation 	Activate contract as indicated in the UCS solution if reasonably sure of its need

• Do you agree with the principles applied here for when an intervention should occur based on the recommendations of the UCS?

• What are the relevant inputs to making this trade-off?

SETTLEMENT RELATED ISSUES

Basic principles

- Resources committed out-of-market to be compensated based on cost
- "Intervention pricing" applies to "out-of-market commitment" *and* services traded on spot market (ahead and/or RT) just like now, and not to system service contract activation.
- Settlement for UCS commitments based on real-time price and quantity (and ahead schedules where applicable):
 - Resources committed "out-of-market" receive cost-based compensation based on plant economic cost data or other relevant verified cost
 - Resources under system services contract receive remuneration based on contract terms
- Contracted system services are provided and remunerated through a form of market mechanism and price signals in spot energy and other services markets reflect the efficient resource mix. Therefore intervention pricing not needed post system service contract activation.
- Contract activation will be communicated to market as early as possible and reflected in subsequent predispatch so market participants and system operator has time to respond to its impact.

FURTHER DESIGN CONSIDERATIONS

- 1. Details for inputs
- 2. Consider the characteristics of different generation technologies and modes of operation.
- 3. Details for scheduling storage units and DER resources
- 4. Lead time, optimisation horizon and frequency of UCS runs
- 5. Representing uncertainty and risks in modelling
- 6. Trade-off between granularity of modelled time interval and modelling complexity and run time

• Are there any other important design details we should consider?

SEEKING YOUR INPUT

Some issues we specifically want feedback on

- Proposed approach to upcoming stakeholder engagement.
- Activation of system service contracts through the UCS, and any potential alternatives.
- Inputs required to assess security and reliability
- The potential to dispatch service contracts if there is a market benefit to do so.
- Principles for the timing of an intervention that is identified in the UCS.
- Principles for when and how to apply intervention pricing.

How you can provide feedback

Please provide initial feedback to <u>info@esb.org.au</u> with email subject heading titled '*TWG UCS briefing*' by **Tuesday 26 May**.

Please get in contact if you have further questions.

• Upcoming focus group meetings:

20 May – UCS feedback session (please download <u>Slido.com</u>)

15 June – Ahead market design elements

16 July – Discuss design, examples, feedback and issues