ENERGY SECURITY BOARD

POST 2025 FUTURE MARKET

PROGRAM

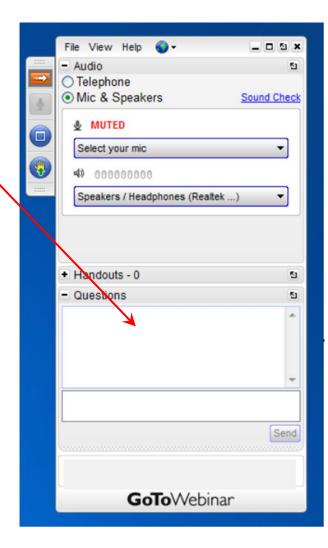
TECHNICAL WORKING GROUP (TWG)

7 APRIL 2020

IMPORTANT NOTES

These slides are solely for workshop purposes only. The content provides general information to support informed stakeholder engagement and feedback.

The presentation does not represent the official position of the Energy Security Board or any related body.


The webinar is being recorded and a link to the recording will be provided after the webinar.

All previous webinar recordings and slides are available here for your reference.

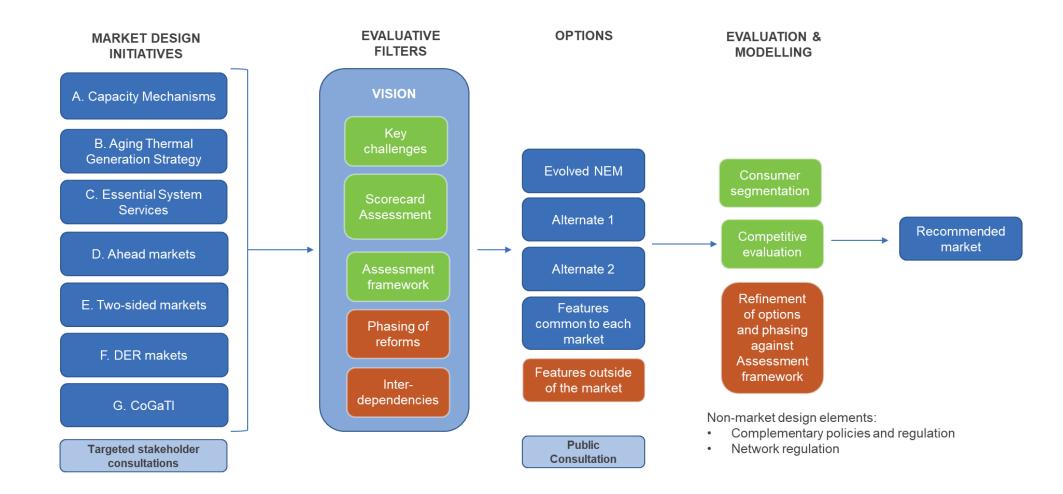
WEBINAR LOGISTICS

- All participants are currently in listen-only mode
- We will pause periodically to answer typed questions: please type them here.
- Time allowing, we aim to open the audio during each Q&A pause and late in the webinar; please:
 - use the *Raised Hand* to signal that you want to speak; and,
 - o make sure you are not on mute.

Today's webinar is being recorded and a link to the recording will be provided after the webinar

POST 2025 FUTURE MARKET PROGRAM (P2025)

The COAG Energy Council tasked the ESB with developing advice on a long-term, fit-for-purpose market framework


to support reliability that could apply from the mid-2020's.

The ESB needs to recommend any changes to the existing market design or recommend an alternative market design to enable the provision of the full range of services to customers necessary to deliver a secure, reliable and lower emissions electricity system at least-cost.

4

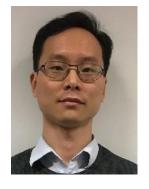
P2025 PROGRAM STRUCTURE & ASSESSMENT FRAMEWORK

P2025 PROGRAM – KEY DELIVERABLES

P2025 PROGRAM – STAKEHOLDER ENGAGEMENT PRINCIPLES

PRINCIPLE	DESCRIPTION		
Inclusive	A proactive approach is taken to ensure relevant stakeholder groups are engaged and provided opportunities for involvement.		
Transparent	Processes are conducted in an open and frank manner with key premises, assumptions and boundaries communicated clearly.		
Coherent	The work program and schedule is logically structured and effectively communicated to external stakeholders.		
Comprehensible	Content is designed to be as accessible to informed energy sector generalists as possible while recognising that specific content will of necessity involve significant technical complexity.		
Responsive	Stakeholder input is given appropriate consideration and their needs and concerns are proactively explored and addressed where possible.		

WEBINAR PRESENTERS


Peter Geers Chief Strategy and Markets Officer AEMO

Frank Montiel Executive Officer Strategy and Markets AEMO

Nicole Dodd Senior Analyst Market Design AEMO

Franklin Liu Principal Analyst Market Design AEMO

P2025 PROGRAM – SYSTEM SERVICES AND AHEAD

MARKETS WORKSTREAMS

TWG #1 TUESDAY 7 APRIL

ROLE OF THE TECHNICAL WORKING GROUP ON THIS WORKSTREAM

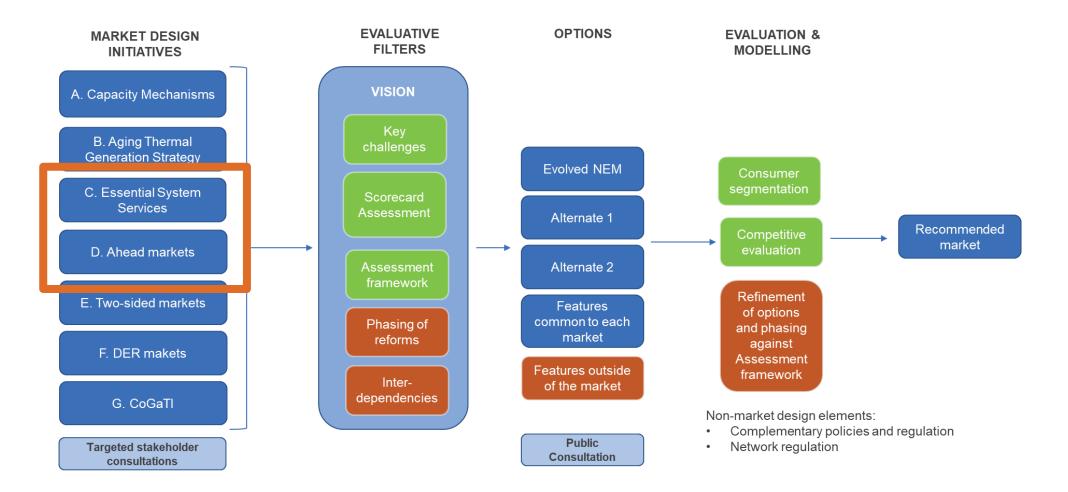
• COAG Energy Council has tasked us with:

the concurrent development of the market design for a two-sided market and a new framework for system services and ahead market arrangements to identify a recommended design by the end of 2020.

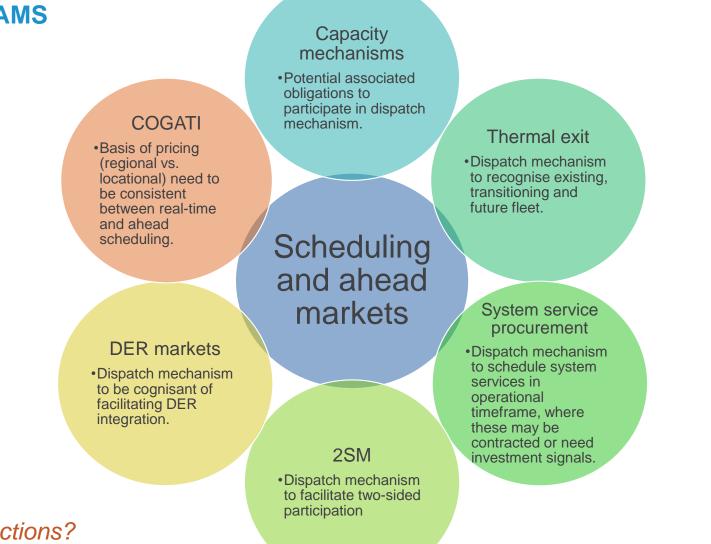
• We would like to engage with TWG to help develop the designs

OBJECTIVE OF THIS MEETING

- Provide context for where the workstream fits in with the rest of the P2025 program
- High level overview of the problem statement and scheduling framework.
- High level description of the key design elements of ahead markets.
- How we would like to engage with the TWG seeking your input and future sessions



Where does the ahead market workstream fit in?


How does it interact with the other workstreams?

TODAY'S SESSION

INTERACTIONS WITH OTHER WORKSTREAMS

Q: Any other key interactions?

OVERVIEW

Needs of a power system

Trends impacting the operation of the system

Market delivery of the power system needs

Overall framework for scheduling of system services

MULTI-FACETED NEEDS OF A POWER SYSTEM

System attribute	Requirement	Service
	Provision of sufficient supply to match	Bulk energy
Resource	demand	Strategic reserves
adequacy	Capability to respond to changes in energy requirements	Operating reserves
Frequency	Maintain frequency within limits	Inertial response
management		Frequency control
Voltage management	Maintain voltages within limits	Voltage control
	Maintain voltages within innits	System strength
System restoration	Ability to restore the system	System restart services

Modern power systems rely on a range of essential services

- A Bulk energy supply and system balancing is but one requirement of a power system
- B To accommodate variability and uncertainty, flexible operating reserves in the system are required
- C Frequency and voltage management are essential for a secure system
- D Voltage and frequency stability is increasingly difficult when synchronous generation reduces during periods of high renewables
- E Australia is at the forefront internationally of much of the technical integration challenges. We must transition prudently, retaining services until alternatives are proven

INTEGRATED SYSTEM PLAN AND THE RENEWABLE INTEGRATION STUDY

AEMO is undertaking technical studies to inform the physical operation of the future power system.

This work is being informed by those studies and the teams are working closely to understand implications.

2020 ISP

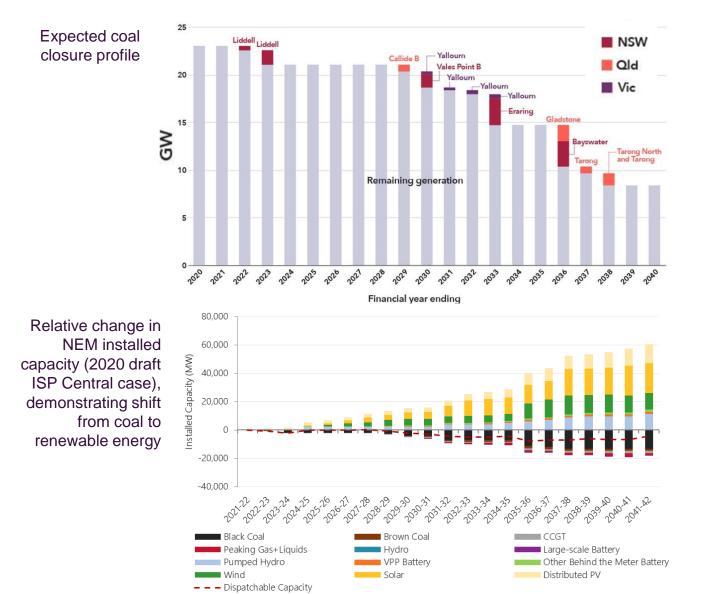
Draft was published in December 2019

Consultation through Q1 2020

Expected final publication in mid 2020

https://aemo.com.au/en/energy-systems/majorpublications/integrated-system-plan-isp/2020integrated-system-plan-isp

Renewable Integration Study

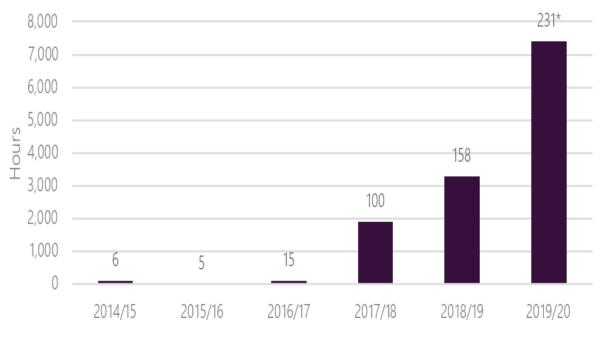

Preliminary results were referenced in the COAG paper and have helped form initial views. Target for publication in late April 2020.

A stakeholder briefing will be held after publication.

If you would like to be added to the distribution list for the upcoming RIS publication, please email FutureEnergy@aemo.com.au.

https://aemo.com.au/en/energysystems/electricity/national-electricity-marketnem/system-operations/future-grid/renewableintegration-study

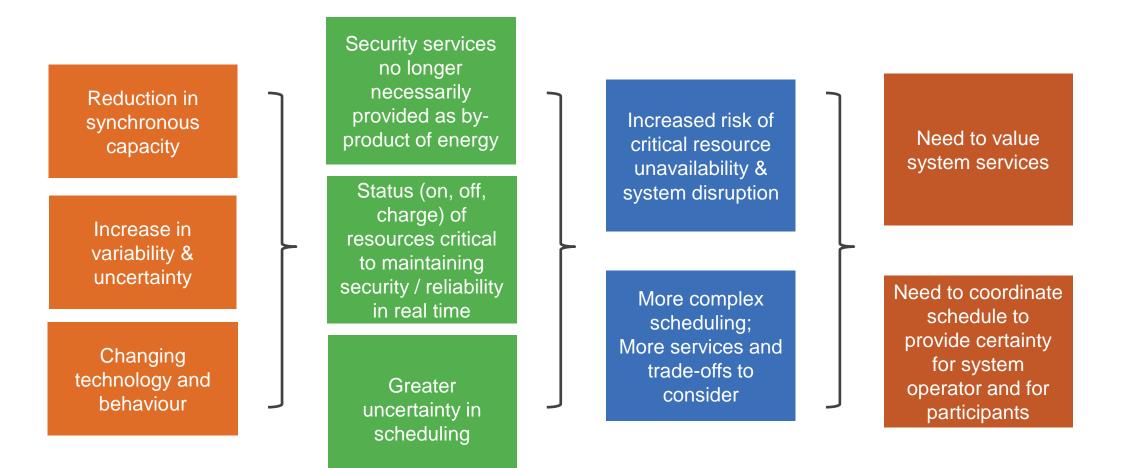
CONTINUED CHANGE IN GENERATION MIX



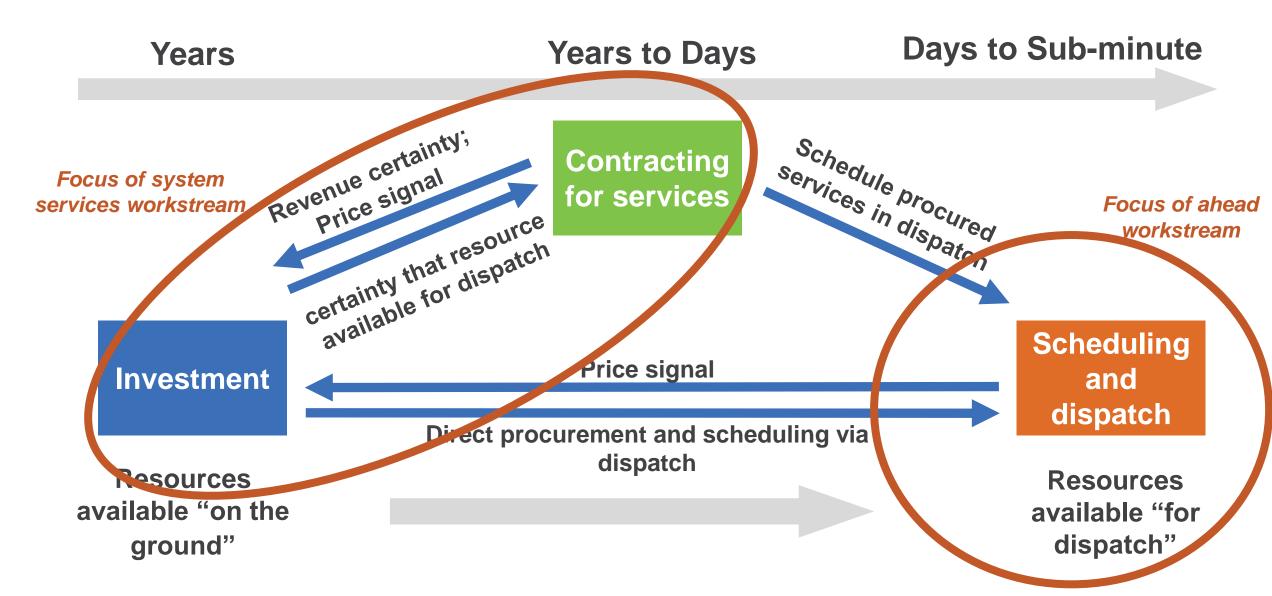
Resource mix will continue towards reducing amounts of synchronous generation online

- A **Expected closure** profile has around 15GW (63%) coal-capacity retiring by 2038
- B Wind and solar generation (variable) capacity in the NEM could **triple** from 15GW in 2018-19 to 45GW in 2039-40
- C Distributed energy generation capacity expected to double or triple by 2040 meeting 13% to 22% of annual consumption.
- D Before retirement, expect that thermal units will want to optimise operation around higher revenue periods (and **operate less**)
- E When there are fewer units, the **scheduling** of remaining ones becomes more critical
- F Replacement **capabilities** must be available before retirement; mechanism to manage an early exit if it would create a short-term reliability or security issue

MARKET CHALLENGES WITH SCHEDULING SECURITY SERVICES



Historical Directions


- Potential system security breach identified in operational timeframe (pre-dispatch) → direction to secure system.
- Potential system security breach may be due to:
 - System service gap materialises as units decommit as energy price insufficient.
 - Uncoordinated scheduling of resources as system becomes more complex; with more resources, separation of services, and potential limited availability of some services.

^{*} to 5 March 2020

FUTURE OPERATIONAL CHALLENGES AND THE NEED TO CHANGE THE SCHEDULING MECHANISM

THE RATIONALE FOR 'AHEAD' MARKETS - INVESTMENT VS DISPATCH TIMEFRAME

Q&A

Pause for questions for clarification

SCHEDULING SYSTEM SERVICES

Methods for scheduling system services

High level assessment

POSSIBLE FRAMEWORK FOR PROCURING AND SCHEDULING SYSTEM SERVICES

Method	Scheduling	Pricing *	Service features	Objectives
1. Scheduled and priced in dispatch	 Co-optimised with all other services 	Within dispatch	 Low scheduling and pricing complexity, compatible with marginal pricing, and 	A Pay for additional services that are scarce but valuable to the system
via co-optimisation		Within diopatori	High level of competition, andUsed regularly	B Reward resources based on their value, leading to efficient operational and investment
2. Scheduled in dispatch via co-optimisation	 Co-optimised with all other services in dispatch 	 Outside dispatch potentially based on contracts 	 High scheduling and pricing complexity, incompatible with marginal pricing, or Low level of competition, and Used regularly 	C Expand co-optimisation in scheduling ensuring efficient resource mix in dispatch and minimising SO intervention
3. Not scheduled in dispatch	 Not explicitly scheduled in dispatch SO intervention or instruction if needed 	 Outside dispatch potentially based on contracts 	 High scheduling and pricing complexity, incompatible with marginal pricing, or Low level of competition, and Rarely used 	D Recognise practical limitations such as market power and compatibility with marginal pricing – pricing formation can be within or outside dispatch

* 'Dispatch' refers to real-time market but also an ahead market. Resources could potentially be scheduled both in realtime and ahead markets according to the nature of the service and of the resources' commitment time requirements.²²

INDICATIVE CATEGORISATION OF SYSTEM SERVICES

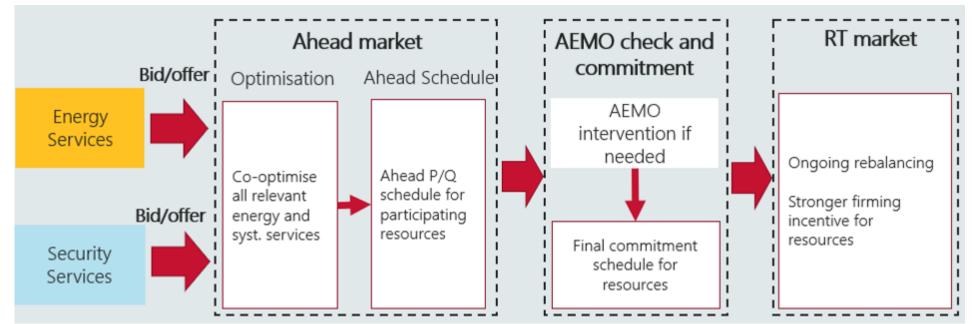
Method	Service	Scheduling and price formation	Degree of competition	Frequency of service need.	Key
 Scheduled and priced in dispatch via co- optimisation Scheduled in dispatch via co- optimisation 	Energy				Favourable
	FCAS				Somewhat problematic
	Operating reserve				Not favourable
	Additional frequency control services (including inertial response)				
	System strength				
3. Not scheduled in dispatch	Voltage control				
	System restart services				

AHEAD MARKET DESIGN ELEMENTS

Features of ahead markets

Ahead scheduling

UCS (unit commitment for security)


Real time market

Spectrum of options

DESIGN PRINCIPLES FOR AN AHEAD MARKET

Enhancing system security and reliability	 Facilitate energy mix transition by improving the secure and reliable operation of the system Ensure adequate resources are available to supply energy and system needs at all times
Improving scheduling and commitment efficiency	 Deliver energy and system services at lowest cost Efficient utilisation of all NEM resources with different operating characteristics RT market key to price imbalance and deviation and reward flexibility to meet short-term volatility Flexibility for participants to respond to commercial incentives and market conditions Minimise SO out-of-market intervention
Encourage efficient ahead market participation	 Provide value for participants to enter ahead markets Facilitate forward procurement of system services to manage costs Allow wide variety of participants to voluntarily take positions in ahead market
Building on existing NEM design	 Add component/s to existing NEM where necessary instead of wholesale replacement Contracting to remain crucial in future NEM operation and investment framework

FEATURES OF AHEAD MARKET

The linkage is crucial

Real-time market condition & price signals provide the right incentive for participants to "honour" their ahead commitment

Real-time market

- Crucial for real-time system balancing at 5-min interval just like now
- RT prices continues to signal the cost of balancing energy and system services
- But also signals the cost of deviation from ahead schedule

- Provides revenue certainty to participants
- Potentially can allow participants to better manage system service costs

Ahead market

• Greater certainty and visibility to AEMO of resource availability in real-time if needed

Potential benefit

- Revenue certainty for participants & facilitate coordination of resources (unit commitment, fuel, staff, customer notification and preparation for DR resources)
- Potential for participants to manage/hedge system service costs
- Stronger incentive for participants to firm supply and allow greater visibility to SO
- Co-optimised ahead scheduling of energy and system services for upcoming dispatch intervals (from several hours to a day depending on design)
- Ahead run produces a quantity (Q) and price (P) (if applicable) schedule of energy and system services for participants
 - Price will also be determined for services in scheduling method 1 (scheduled and priced)
 - Services in method 2 will be scheduled for co-optimisation, but will be remunerated as per contract
- Deviation from ahead schedule will be priced based on real-time system condition (for method 1), or based on contractual agreement

UCS (UNIT COMMITMENT FOR SECURITY) Ahead scheduling

	•	More streamlined intervention process to enhance system security and reliability
Potential benefit	•	Least cost approach to commit out-of-market resources
	•	Greater certainty to AEMO and participants by reducing ad hoc intervention
	•	UCS at different times (daily vs hourly) to balance system needs and flexibility

Input

1. AEMO system forecast

- 2. Combination of PDS and ahead market scheduling outcome (if applicable)
- 3. Plant economic & technical information on start up, min-gen and incremental costs for SO's out-of-market commitment decisions

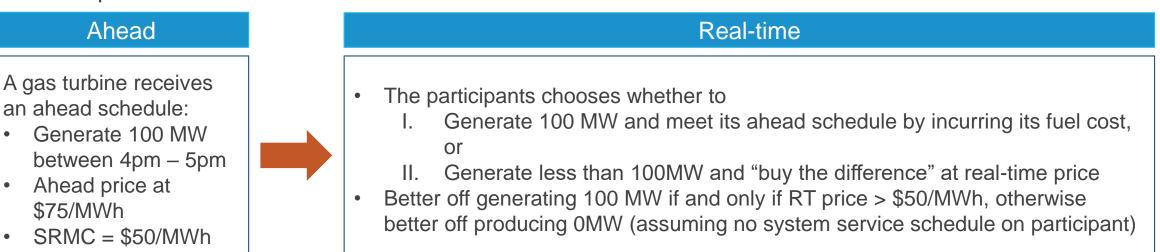
UCS

- 1. AEMO assessment of all requirements based on PDS and ahead market outcome
- 2. Commits "out-of-market" resources if gaps in security and reliability identified in assessment window
- 3. Least cost approach based on plant economic information

Output

- 1. Physical Commitment Plan (PCP) which *could* include:
 - On/off conditions start time, run length etc
 - II. Level of variable output energy and relevant system services (e.g., reserve)
- Pivotal resources for some system services might require explicit AEMO approval before changing crucial commitment decisions

REAL-TIME BALANCING


Ahead scheduling

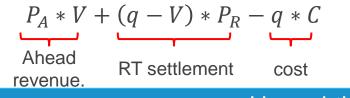
UCS (Unit commitment for security)

RT balancing

- Real-time market remains crucial in the new dispatch mechanism
- Critical for system balancing and signal real-time scarcity cost
- Continues to reward flexibility to respond to short-term fluctuations
- Provides economic basis for participants to deviate from ahead schedules if efficient
 - Participants settle difference b/w RT output and ahead schedule at RT price

An example...

RT-market provides participants with the right economic signals to respond to their own commercial needs 29


AN EXAMPLE OF RT SETTLEMENT

How settlement works

Example uses energy settlement as this is most familiar to participants.

Similar concepts could be applied to system service costs settlement depending on design.

- A resource receives an ahead schedule of V MW at ahead price P_A /MWh for an hour
- Resource generates q MW in real-time for that hour where RT price is \$P_R/MWh, with short run marginal cost of \$C/MWh
- The payoff of the resource is

How resources can respond in real-time

- When a resource generate more in real time than ahead schedule (q > V), it receives an additional payment for difference at the real-time price
- Conversely (q < V), it buys back the difference at the real-time price
- It is better off buying the difference back if and only if $P_R < C$. That is, the real-time price is lower than its own cost
- The incentive and flexibility of the participant in RT operation remains the same as now.

SPECTRUM OF OPTIONS

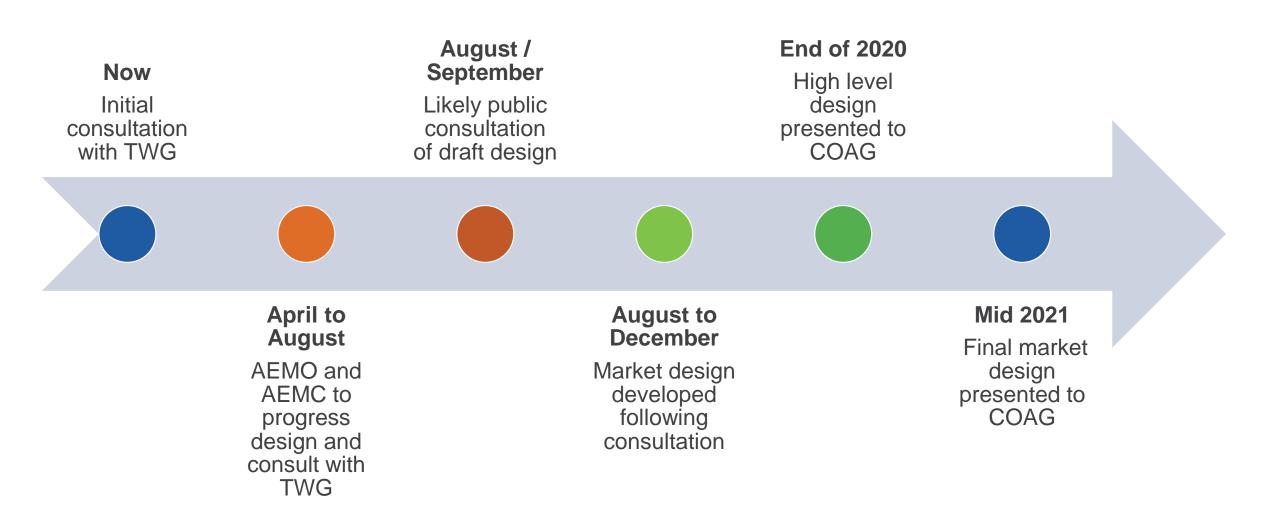
Minimum change from current NEM Enhance firming through ST contracts System services Most firm commitment						
1. Unit Commitment for Security (UCS - only)	2. UCS plus voluntary forward market	3. System security ahead market	4. Compulsory ahead market design			
 Resources committed by system operator if reliability and security gap identified ahead of real-time UCS is an enhanced unit commitment process compared to current arrangement 	 UCS plus voluntary short-term forward market for participants to trade energy ahead of RT STFM can be designed for both energy and other system services 	 Formal co-optimised ahead-scheduling for all services Participation for some system services ahead scheduling might be mandatory Voluntary participation in other services including enregy 	 Similar to option 3, but Mandatory participation for all energy and security resources in ahead scheduling More specific individual plant level requirement More stringent gate-closure rules 			

- A formalised market-based unit commitment process is in place in all options
- Progressively (from left to right) more coordinated and co-optimised ahead scheduling for resources

AHEAD MARKET ELEMENTS IN THE SPECTRUM

	1. Unit Commitment for Security (UCS - only)	2. UCS plus voluntary forward market	3. System security ahead market	4. Compulsory ahead market design
Ahead scheduling	N/A	Opportunity to trade short term contracts for energy and system services ahead of real-time.	Co-optimised ahead Mandatory participation all energy and system services.	
UCS	Inputs: PDS, economic / technical operating information Output: Physical commitment plan (PCP) for out-of-market resources and some pivotal resources	Similar to option 1, with PDS expected to be updated to reflect VFM outcome	Similar to option 1, with PDS expected to be updated to reflect ahead scheduling outcome	
RT balancing	Stays as per now - mandatory gross pool scheduling. PCP affects payment and operation of relevant resources	Similar to option 1, with VFM schedule included in settlement	Similar to option 1, with ahead market schedule included in settlement	

Q&A


Pause for questions for clarification

ENGAGING IN THE TWG

Proposed plan

Next steps

NEXT STEPS FOR THE AHEAD MARKET DESIGN WORKSTREAM

SEEKING YOUR INPUT

Some issues we specifically want feedback on

Overview:

- Any other key interactions between market design streams?
- What are your views on the future operational challenges facing the NEM?

Ahead Markets – seeking your feedback on:

- the principles for ahead markets.
- key considerations for the design of the UCS, including the commitment of units providing system services that may not otherwise be online.
- key considerations for the ahead market design for providing commercial certainty while maintaining flexibility to respond in real-time to changing market conditions.

How you can provide feedback

- Please provide feedback to <u>info@esb.org.au</u> with email subject heading titled 'TWG ahead markets briefing' by **Tues 14th April**.
- Please get in contact if you have further questions about the material presented today.
- Upcoming TWG meetings:
 - 14 May Unit Commitment for Security
 - 15 June Ahead market design elements

Note: Essential System Services will be part of separate engagement commencing shortly